PHYSICAL REVIEW E

VOLUME 49, NUMBER 6

JUNE 1994

Analytical theory of zone plate efficiency
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The theory is developed which enables us to derive explicit formulas for the efficiency of thick
zone plates. The theory employs the method of coupled wave equations. The solutions obtained can
be applied to the large class of zone plates and diffraction structures which are locally equivalent to
sliced multilayers. Based on this theory we find limits to the diffraction efficiency of zone plates due
to refraction and absorption indexes of materials. The results can be applied in x-ray, neutron, and

atom optics.
PACS number(s): 42.79.Ci

I. INTRODUCTION

Recent advances and prospects for high resolution
imaging with x-ray [1], neutron [2], and atom beams [3]
are to a large extent associated with zone plates [4]. They
are systems of alternating annular layers of two materials
(one of which can be the vacuum) with different optical
constants. Every pair of neighboring layers corresponds
to a Fresnel zone, the total number of which reaches 500,
and the width of the outermost zone can be of the order
of the wavelength ) of the radiation used for imaging.

From the point of view of the wave theory a zone plate
is a typical multiscale object. It has at least three charac-
teristic lengths: the width of the zone (angstrom scale),
zone plate thickness (submicrometer or micrometer), and
focal length (submillimeter or millimeter). This multi-
scale character presents severe difficulties for analytical
and numerical description of zone plate properties.

High throughput zone plates are extremely desirable
for current microscopy experiment as the intensity of x-
ray, neutron, and atom beams is often not enough to
achieve reasonable exposure time and spatial resolution.

The estimations of diffraction efficiency and design of
zone plates are usually based on Fresnel-Kirchhoff the-
ory, which predicts 10% efficiency for the amplitude zone
plate and 40% efficiency for the phase zone plate [5,6].
Some possibilities were indicated to increase these values
by varying the density of materials inside the zones [7].

However, in the conventional Fresnel-Kirchhoff theory
the zone plate is considered as a screen and diffraction
effects inside the zone plate body are neglected. This is
justified if the zone plate thickness = < §2/) , where § is
the width of the outermost zone. But this condition is vi-
olated for thick zone plates which are necessary to use to
obtain high diffraction efficiency. So more rigorous cal-
culations coming beyond the framework of the standard
Fresnel-Kirchhoff theory are needed. Maser and Schmahl

[8] demonstrated a numerical approach to the problem
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using coupled wave equations for diffraction amplitudes
and showed that local diffraction efficiency of x-ray zone
plates considerably increases if the proper thickness and
slant of the zones are provided.

In this paper we develop an analytical approach to cal-
culation of diffraction efficiency of zone plates. We use
the analogy between zone plates and sliced multilayers,
the theory of which was considered in [9]. In Sec. II
the general approach and basic equations are given. In
Sec. III coupled equations for diffraction amplitudes are
solved near the Bragg resonance, which is the most inter-
esting case for various applications. In Sec. IV the final
expression for diffraction efficiency is obtained in terms of
zone plate aperture, thickness, optical constants of mate-
rials, and their spacing ratio (i.e., the ratio of widths of
material layers inside one zone). Further consideration
is based on this result. In Sec. IV A it is shown that to
obtain the zone plate with highest diffraction efficiency
the value of the spacing ratio should be chosen exactly
in the same way as it is done in the theory of multilayer
mirrors [10]. Then in Sec. IVB and IV C the dependence
of efficiency on the thickness is considered for zone plates
of various types. New values of upper and lower limits
of diffraction efficiency follow from this consideration. In
Sec. V the theory is applied to pattern and sputter-sliced
zone plates made of Ni and Be. These materials are used
now in imaging experiments with x-ray lasers and syn-
chrotron radiation [5,11]. As practical examples in this
paper we take only x-ray zone plates. However, the same
approach can be used for analyses of Fresnel zone plates
used in neutron and atom optics.

II. BASIC EQUATIONS

A. Foreword

For the sake of completeness we begin with the known
formulas of the zone plate theory [5] and derive them
considering the zone plate as the combination of local
gratings.

Let us consider a zone plate that images at a distance
z a point source located at a distance z from the zone
plate (see Fig. 1). Assume that the image is produced
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FIG. 1. Ray diagram for imaging zone plate.

by narrow beams and each beam emitted by the source
at an angle 6 interacts with the zone plate as with the
infinite grating having the local period

dn =Tn —Th-1, (1)

where r,, is the radius of the nth zone. So we define a
zone as one period of local grating.

To produce the image every small part of the zone plate
(i.e., every local grating) should direct the first diffraction
order of the incident beam toward the point z . This is
provided if the grating equation

dn(sinf, +sinf,) = A, (2)
where
sin,, = Tn sin 0; = 'n

S " 3
NeEr NeErc

is valid for any 6,. Then taking into account (1) we

obtain

(Tn+1 — Tn)(

Tn T
+ =)\. 4
Ve + 22 \/r3+2'2) )

This is the recurrent formula for zone radius r,.
Strictly speaking it is true since the variation of the pe-
riod is small as compared with the period:

dpir — dn < dn.

That is why it is reasonable to consider the zone num-
ber n in (4) as a continuous parameter and replace (4)
by an equivalent differential equation:

dr r r
-n n + n =}, 5
dn <\/1,-72L + 22 \ﬁle ¥ 212> ( )

the solution of which can be written as

T2 4224 4/r2 + 22 =An+ 4/r2 + 224 4/r2 + 2'2,
(6)

where 7¢ is the radius of the Oth zone, or in other words,
7o is the radius of the central obscured zone.

Formula (6) is the equation for the zone radius r,,. It is
exactly the same as one usually obtained by calculation of
the phase differences for the rays deflected by neighboring
zones [5]. Note that the local period d, in (1) and (2) is
the sum of the widths of transparent and opaque zones.
For arbitrary diffraction order m the local period can be
written in the form similar to (2):

mA

d(6) =

z
sin @ + sin 6, anm z an (7)

Let us now apply the local grating approach to calcu-
lation of zone plate efficiency.

B. Total diffraction efficiency

In order to find the amplitudes of diffracted waves we
must solve the wave equation for the plane waves incident
onto the local grating:

0°E O’E 27

—— + —— + k*E + k*¢(z,y)E=0, k=" (8

5ot +gr TRE+ B E=0, k=2 ()
where €(z, y) is the difference between dielectric constant
and 1. It is a periodic function of y which vanishes outside
the zone plate €¢(x,y) = e(z,y + d) (Figs. 2 and 3).

The exact solution of (8) can be written in the form
(see, for example, [12])

E(z,y) = exp(ikysinf) f(z,y)

— f fm () exp[iy (ksine— 27r7m>} )

m=—0o0

where 6 is the angle of incidence of the plane wave onto
the grating, f(z,y) is a periodic function of y, f,,(z) is
the amplitude of the mth diffraction order.

Let I and 7 characterize the local intensity and the
direction of propagation of the beam incident onto the
zone plate (or in the general case, arbitrary dispersive
element); I,, = I | fm, |? and 7, are the intensity and
direction of propagation of the mth diffraction order (see

FIG. 2.

zones.

A local grating of the zone plate with slanted
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FIG. 3. Shape function of local grating permittivity of the
zone plate produced by lithographic or sputter-sliced meth-
ods.

also Fig. 1). Then the total diffraction efficiency of the
mth order (TDE) is given by the ratio of total amounts
of diffracted and incident energies:

fIM(o)ﬁ i — fI

[1(6)7- da

| fm |2 cos by, do
J 1(8) cos 8do ’

(10)

where according to (7) sinf,, = Am/d — sinf. The inte-
grals in (10) are taken over the entire surface of the zone
plate (dispersive element).

TDE depends on the zone plate geometry and also on
the structure and position of the source. Let us calculate
TDE for the point source located at the axis of the zone
plate (Fig. 1). Then we have I = Iycos? §/4mr2z% and do =
27 22sin 0/ cos3 0d@, where I is the total power radiated
by the source. Substituting this into (10) we obtain

Etpg =

‘2 cos b,

02
| fm(0) v sin 0d4, (11)

6,

Erpg =C™!

where C = cos; — cos 03, and 0; and 0, are the smallest
and largest angles of zone plate aperture. Thus TDE of
the zone plate in the mth order is given by formula (11)
in terms of local diffraction amplitude f,(6).

C. Coupled equations

Diffraction amplitudes f,,(0) obey the system of cou-
pled equations which can be easily obtained by substi-
tuting of expansion (9) into wave equation (8):

Fn(@) + B2 fn(2) + B D ft (@) (2) =0,
m’ #m
(12)

where

2
K,,zn =1- (sinG - ATm) -I-EO(;L') = cos? O + eo(z),

(13)

and

em(z) = % /od €(z,y) exp (i21rm%) dy. (14)
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Till now we used the only suggestion that the zone
plate is locally (at any given 8 or r) characterized by
permittivity, which is a periodic function of y. Let us
consider the zone plate with slanted zones (see Fig. 2).
Then the local grating becomes a full analog of sliced
multilayer. As it was shown in [9] in this case the trun-
cated system of coupled equations corresponding to (12)
has exact analytical solution. We will apply a similar
approach to calculation of zone plate TDE [see (11)].

So the zone plate with slanted zones is locally consid-
ered as a sliced multilayer. This means that e(z,y) =
e(—zsina + ycosa). Then coupling coefficients €,,(x)
take the exponential form

. T .
€m(T) = exp ('L27rm2 sin a) €m, (15)

em = %./: 0 )exp(z21rm )dy, (16)

where a(0) is the local angle of zone inclination, and d
and é(y) are the period and the shape function of per-
mittivity of the local grating.

The present technology (electron-beam lithography or
sputter-sliced technique [5]) produces the zone plate as a
set of alternating well separated zones of two materials 1
and 2. For this case the shape function is shown in Fig. 3
and coefficients ¢,, can be written as

€m=ﬂ€1+(1—ﬁ)62, m=01
(17)

em=(61—52)M, m #£ 0.
m

The zone plate efficiency (10) is expected to be large if
the resonance effect takes place in all the local gratings.
This means that incident radiation is mainly transformed
into one of diffraction orders and the intensity of other
orders is very small and in the system of Eq. (12) they can
be neglected. Then we obtain the system of two coupled
equations:

fo (@) + k*kE fo(@) + k* frm ()
X exp (—i27r'rnE sina) €m =0,

d

Fm(@) + K2K7 frn () + K2 fo(2)
. T .
X exp (z27rm-& sma) €m =0,
where ¢, are given by (17) and kg,kn by (13).

III. SOLUTION
NEAR THE BRAGG RESONANCE

Exact analytical solution of (18) was used in [9] for the
theory of sliced multilayers. This solution can be consid-
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erably simplified if we introduce slowly varying ampli-
tudes ¢o(z) and ¢, (z):

fo(z) = do(z) exp(tkrozx),
(19)
fm(z) = dm(z) exp(tkrmz).

Substituting (19) into (18) and neglecting the second
derivatives of ¢¢ and ¢,, we obtain

! kEm .
idy + E(ﬁm exp(iBkz) =0 ,

(20)
6+ Fem exp(—iBkz) = 0
? m 2I€m m p z) =Y,
where
Am
B = (km — Ko) — — sina. (21)

The diffraction amplitude in the mth order is found
by solving Eq. (20) with initial conditions ¢¢(0) =

1,0, (0) = O:
1€m . B\ . A
Om(z) = A exp <—1km—2-> sin <k$-2—) , (22)
where

2
A=y|B2+—2 (23)
KoKm

As is seen from (22) the diffraction amplitude ¢,,(x)
is proportional to €,,, which is a small parameter in soft
x-rays due to dielectric constant (1 + €) being close to 1.
However, the diffraction amplitude can be large (of the

order of 1) if resonance condition | B |<| —Z=— | takes

place. In this case | A |« 1 and the amplitude ¢,, as
is seen from (22) is actually a slowly varying function of
z and assumptions adopted for derivation of (20) from
(18) are true. Therefore using (19) and (22) we obtain,
for the intensity of the diffracted wave,

J

02 kx

os@

sin t/m

Erpg=C~!
61

sin 0d0 exp (

X [sinh2 ( ka

2cosf wm

Aperture angles #; and 6, which according to (11) de-
fine the geometrical factor C can be expressed in terms of
radius of obscured zone rg, focal length 2, and the total
number of zones N with the help of (3) and (6):

z cos 6

, coslfy = ——————. 27
22 + 12 2 1+%c0501 (27)

cosf =

Two parameters can yet be varied in (26) in order to

Im(e; — 62)) + sin? (
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2

€m
| fm |2= ';ﬂz exp|—kz Im(ko + Km )]
k
x [sinh2 (%xlmA) + sin? (—;ReA)] , (24)
where K., €m, and A are given by (13), (14), (21), and
(23).

With the help of this expression the efficiency of an
arbitrary zone plate with slanted zones can be calculated
and optimized to provide maximum throughput. This
means that optimal materials, their spacing ratio inside
the zones, the zone plate thickness, and zone inclination
can be determined.

IV. OPTIMIZATION
OF ZONE PLATE PARAMETERS

For an example let us consider diffraction efficiency of
a zone plate which images the source with 1:1 magnifica-
tion, which means that z = 2" (see Fig. 1). Then using (7)
and (13) we obtain 6,, = 8 and k,, = kKo = V/cos? 6 + €.

First of all, to provide the resonance effect we define
the slanting angle . As is seen from (24) and (23) the
proper choice is B = 0, which according to (21) means
a = 0, i.e., the zones should be horizontal. In this case
| A |2=| . |? and the small parameter | €, | in diffrac-
tion amplitude (24) is compensated:

Ko

Substituting this into (11) and keeping only main
terms in expansion of kg and ;1— in the powers of €5 we
obtain the total diffraction efficiency of the zone plate
with horizontal zones and 1:1 magnification:

[Imez + BIm(e; — 62)]>

ko _sinmfmp e - ez))] : (26)

2cosf wm

[

optimize TDE for given wavelength A = 2kz, zone plate
materials €; and €3, and aperture angles 6; and 6;. They

are the spacing ratio 3 and zone plate thickness x.

A. The choice of the spacing ratio 8

To find the optimal value of the spacing ratio (3 it is
convenient to rewrite (26) in the form
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EtpE = C_IQ/ exp(—2tM)
=2 sinwfm
. 12 . 2 dt
x [sinh® t + sin (ft)]ﬁ , (28)
where
__ kzsinwfm __ Re(eg —€2)
Q - ?—m—lm(El 62)’ f - Im(€1 — 62),
(29)
_ Ime,
9= Im(q - 62) )

Parameter Q is proportional to zone plate thickness z,
and parameters f and g are exactly the same as those
which appear in the theory of multilayer mirrors [10,13].

As is seen from (27) the maximum value of TDE is
reached when —2*8_ is minimal, that is,

sintBm
tan(wfBm) = mm(B + g). (30)

Again it is the same condition which is true for mul-
tilayers. For optimal spacing ratio 3 which satisfies (30)
we have

cont 2t
Etpg = C_IQ/ exp (—_)
_Q_ cosTfBm

Sos 67

x[sinh? ¢ + sinz(ft)]% . (31)

So formula (31) gives maximum diffraction efficiency
that can be obtained for the zone plate fabricated of ma-
terials 1 and 2 and having aperture angles 6; and 6,. The
thickness = can also be chosen so as to produce the high-
est possible diffraction efficiency. This will be considered
below.

B. Phase zone plate

The diffraction efficiency of the phase zone plate is
obtained by taking in formula (26) Ime; = Ime; = 0:

1.0
EO.S— —_———Ng— - -
B
0.0
0 1 2 3 4 5
P
FIG. 4. Efficiency of phase zone plate as a function of

thickness [see formula (32)].

%, d
Erpg = c-IP/ " sin?y >,
. y
(32)
p = kesimmbmy e —e).

2 ™

The diffraction efficiency (32) of phase zone plate
which has 27 solid angle (6; = 0,02 = %) is reduced
to

oo .+ 2
EtpE = P/ sz Yay, (33)
P Yy

and is shown in Fig 4. The maximum efficiency of the
thick phase zone plate is reached at P = 0.95 and equals
to 67% for any diffraction order. This value is 1.6 times
larger than that known from Kirchhoff-Fresnel theory.

C. Pattern zone plates

These zone plates consist of alternating circular layers
of material and vacuum. They are fabricated by lithog-
raphy or contamination technique including beam draw-
ing and etching [5]. To describe them we are to take
Ime; — 0 and Reez — 0 in the formulas obtained above.

The maximum TDE as it is seen from (30) and (31) is
obtained for spacing ratio 8 — 0. For a zone plate with
27 aperture this gives

Erpg = R/ exp(—2t)[sinh® t + sinz(ft)]g, (34)
R
where
kz sinwffm Reey
= T e, f= e,
2 mm Ime,

The lower limit of (34) occurs for absolutely opaque
material Ree; <« I'me;:

03¢
02}
=
a
1S
0.1
0.0
0.0 0.5 1.0 1.5
R
FIG. 5. Efficiency of a zone plate with opaque zones as a

function of thickness [see formulas (34), (35)].
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Etpg = R/ exp(—2t) sinh? t;i—zt. (35)
R

Maximum diffraction efficiency (35) of a thick pattern
zone plate made of absolutely opaque material as shown
in Fig. 5 equals 25%. Compare with 10% as it follows
from Kirchhoff-Fresnel theory for a thin amplitude zone
plate.

V. APPLICATION TO REAL MATERIALS

Let us calculate the maximum total diffraction effi-
ciency which can be achieved with materials usually used
now for zone plate and multilayer fabrication.

A. Pattern zone plate

For example, we consider a 2m-aperture zone plate
made of Ni which is often used in the range 10 A< A < 50
A. In Fig. 6 the dependence of efficiency upon the thick-
ness is shown for A = 30 A and various spacing ratio 8
calculated according to (28) and (29). As was mentioned
in Sec. IV C and seen from Fig. 6 the efficiency increases
if spacing ratio 3 — 0. However, the practical value of
3 is limited by the total number of zones in the zone
plate. Curve (a) in Fig. 7 shows maximum efficiency of
the zone plate in dependence on the wavelength A [see
formula (34)]. As is seen, 40% efficiency is possible and
B = 0.1 provides the efficiency close to the maximum
value.

B. “Sputter-sliced” zone plate

The zone plates consisting of alternating annular layers
of two materials are fabricated by sputtering onto a thin
metallic wire used as a substrate and subsequent cutting
and etching to obtain required thickness [5]. The promis-
ing advantages of such a technology are (a) to advance to
a very small width of the outermost zone to obtain high

0.4
0.3 (c)
80.2
& (b)
0.1}
(a)
0.0
0.0 0.2 0.4 0.6 0.8 1.0
x (um)
FIG. 6. Efficiency of Ni zone plate at A = 30 A as a

function of thickness for various spacing ratios: (a) 8 = 0.5,
(b) B = 0.3, and (c) B8 = 0.1 [see formulas (28), (29)].

0.5 [

FIG. 7.

maximum efficiency of Ni-vacuum

Curve (a):
zone plate as a function of wavelength A. Curve (b): the
same for Ni-Be zone plate. Curve (c): optimal thickness of
Ni-Be zone plate as a function of wavelength A.

spatial resolution, and (b) to produce zone plates with a
high aspect ratio (thick zone plates), which is necessary
to increase the zone plate efficiency TDE.

Let us consider a “sputter-sliced” zone plate made of
two materials, Ni and Be, which are recognized as good
pairs of materials for multilayer mirror fabrication for
wavelength range A < 50 A. The results of calculations
according to (31) are shown in Fig. 7, where the wave-
length dependencies of maximum efficiency [curve (b)]
and optimal thickness [curve (c)] are presented. The con-
siderable decrease in the efficiency in comparison with a
Ni-vacuum zone plate is evidently due to the absorption
in Be.

VI. SUMMARY

An analytical theory of thick zone plate efficiency
has been developed. This leads to explicit formulas for
diffraction efficiency, which enable one to choose mate-
rials, their spacing ratio, and the zone plate thickness.
The following ideas and assumptions were essential in our
consideration: (a) the zone plate is treated as a grating
with slowly varying period, (b) locally, in small areas the
zone plate has the structure of a sliced multilayer, and
(c) the full wave equation can be replaced (truncated) by
the system of two coupled wave equations, which has ex-
act analytical solution. Assumptions (a)-(c) are valid for
a large class of zone plates, including those produced by
existing technology and used in x-ray, neutron, and atom
optics. The same approach can be employed for design
of zone plates having magnification M # 1 intended for
application in imaging and scanning microscopy and also
for zone plates with variable thickness, zone profiles (e.g.,
sawtooth), or zone transmission functions to obtain the
enhanced diffraction efficiency.
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FIG. 2. A local grating of the zone plate with slanted
zones.



